Датчики Холла: устройство, принцип работы, виды и области применения преобразователя

В конце XIX века американский ученый из Балтимора Эдвин Герберт Холл поместил полупроводниковую пластину в магнитное поле и подключил к ней электрический ток. Такое действие привело к появлению напряжения на широких сторонах пластины.

Это явление получило название эффекта Холла и привлекло внимание общественности. Спустя 75 лет, когда промышленность начала выпускать полупроводниковые пленки, это открытие нашло широкое применение в области техники. Сегодня датчики используются:

  1. В электронном зажигании на автомобилях.
  2. В двигателях компьютерного дисковода и вентилятора.
  3. Как основа электронного компаса в смартфонах.
  4. В бесконтактных электрических приборах для измерения силы тока и напряжения.
  5. В некоторых моделях ионных реактивных двигателей.

Первые разновидности датчиков стали выпускаться в середине XX века. В 1965 году американские специалисты создали твердотельный прибор, который значительно улучшил работу оборудования. Датчики считаются практически вечными, так как не имеют взаимодействующих и трущихся элементов.

Конструктивные особенности

Наиболее эффективными материалами для изготовления датчика считаются полупроводники арсениды галлия и индия. Чаще прибор представляет собой пленку, толщина которой не превышает 10 мкм. Датчик имеет три клеммы:

  • питающая с входным напряжением 6В;
  • нулевой контакт;
  • выходная, с которой сигнал поступает на коммутатор.

Клемма, к которой подходит питание, широкая и занимает всю сторону прямоугольника. Выходная клемма обладает точечным электродом. В качестве нулевого контакта выступает общая точка. Так как при отсутствии магнитного поля на контактах остается небольшой сигнал, то для коррекции выходных данных применяется дифференциальный усилитель.

Микросхема наносится на подложку методом литографии, что позволяет повысить точность показаний. Обычно в различных приборах это применяется для проверки положения элементов механизма.

Проявление неисправности и возможные причины

Нарушения в работе ДХ можно обнаружить по следующим косвенным признакам:

  • Происходит резкое увеличение потребления топлива. Это связано с тем, что впрыск топливно-воздушной смеси производится более одного раза за один цикл вращения коленвала.
  • Проявление нестабильной работы двигателя. Автомобиль может начать «дергаться», происходит резкое замедление. В некоторых случаях не удается развить скорость более 50-60 км.ч. Двигатель «глохнет» в процессе работы.
  • Иногда выход из строя датчика может привести к фиксации коробки передач, без возможности ее переключения (в некоторых моделях импортных авто). Для исправления ситуации требуется перезапуск мотора. При регулярных подобных случаях можно уверенно констатировать выход из строят ДП.
  • Нередко поломка может проявиться в виде исчезновения искры зажигания, что, соответственно, повлечет за собой невозможность запуска мотора.
  • В системе самодиагностики могут наблюдаться регулярные сбои, например, загореться индикатор проверки двигателя, когда он на холостом ходу, а при повышении оборотов лампочка гаснет.

Совсем не обязательно, что перечисленные факторы вызваны выходом из строя ДП. Высока вероятность того, неисправность вызвана другими причинами, а именно:

  • попаданием мусора или других посторонних предметов на корпус ДП;
  • произошел обрыв сигнального провода;
  • в разъем ДП попала вода;
  • сигнальный провод замкнулся с «массой» или бортовой сетью;
  • порвалась экранирующая оболочка на всем жгуте или отдельных проводах;
  • повреждение проводов, подающих питание к ДП;
  • перепутана полярность напряжения, поступающего на датчик;
  • проблемы с высоковольтной цепью системы зажигания;
  • проблемы с блоком управления;
  • неправильно выставлен зазор между ДП и магнитопроводящей пластиной;
  • возможно, причина кроется в высокой амплитуде торцевого биения шестеренки распределительного вала.

Дискретные датчики Холла (Switch/Latch Sensors)

Определение наличия или отсутствия какого-либо объекта является, с одной стороны, самой простой, а с другой – самой распространенной задачей. Именно поэтому сфера применения дискретных датчиков простирается от бытовых приборов до серьезных промышленных и автомобильных систем с наивысшим уровнем функциональной безопасности. Этим же объясняется и широкий ассортимент датчиков, предлагаемых компанией Infineon, которые отличаются как по электрическим (чувствительность, гистерезис, тип выхода и так далее), так и по эксплуатационным характеристикам (температурный диапазон, диапазон рабочих напряжений и прочее).

Чаще всего дискретные (одиночные) датчики Холла применяются:

  • для определения наличия или отсутствия какого-либо объекта, например, датчик закрытия двери в охранных системах;
  • для определения наличия движения, например, датчик скорости вращения вала электродвигателя;
  • для определения положения объекта, например, концевые датчики стеклоподъемников автомобилей или датчики положения ручки управления автоматической коробкой передач (рисунок 3).

Рис. 3. Два комплекта (для обеспечения функциональной безопасности) датчиков Холла для определения положения ручки управления АКПП

Принцип работы дискретных магнитных датчиков производства компании Infineon основан на классическом эффекте Холла: чувствительный элемент измеряет величину электромагнитной индукции, в зависимости от которой выход микросхемы переводится в уровень логического нуля либо логической единицы.

Существуют два основных типа датчиков, отличающихся алгоритмом изменения выходного сигнала (рисунок 4). В простых переключателях (Switch) активный уровень выходного сигнала на выходе микросхемы устанавливается, если индукция внешнего магнитного поля превышает определенную величину. При этом для возврата в исходное состояние достаточно, чтобы индукция внешнего поля всего лишь стала меньше порогового значения (с учетом гистерезиса). Полярность магнитного поля при этом может быть как определенной (Unipolar), так и неопределенной (Bipolar). Такие микросхемы идеально подходят для определения наличия или отсутствия каких-либо объектов, например, в концевых датчиках, датчиках открытия/закрытия двери, датчиках положения ротора электродвигателя и прочих.

Рис. 4. Принцип работы дискретных датчиков Холла

В дискретных датчиках с защелкой (Latch) переключение выходного сигнала происходит только при достижении индукцией внешнего магнитного поля определенных пороговых значений, причем уровень выходного сигнала при этом зависит от полярности внешнего поля. Другими словами, после установки на выходе, например, логической единицы датчик вернется в исходное состояние только после того, как внешнее магнитное поле поменяет свою полярность. Такие датчики идеальны для приложений с вращающимися элементами. Например, с помощью дискретного датчика с защелкой можно достаточно легко определить частоту вращения вала электродвигателя.

Отдельно следует отметить микросхемы, содержащие в одном корпусе два датчика Холла (Double Hall Switches), с помощью которых можно определить не только частоту, но и направление вращения вала электродвигателя. Одним из таких приборов является микросхема TLE4966 с двумя выходами (рисунок 5), на которых присутствуют сигналы как о скорости (Speed), так и о направлении (Direction) вращения вала электродвигателя.

Рис. 5. Принцип работы микросхемы TLE4966

Дискретные датчики производства компании Infineon делятся на три большие категории, отличающиеся областью применения. Для автомобильных приложений следует выбирать датчики с префиксом TLE, которые могут работать в диапазоне рабочих температур -40…170°С при напряжении питания 3,0…5,5 В или 3,0…32 В. Аналогичный диапазон питающих напряжений и у датчиков, маркированных префиксом TLI и предназначенных для промышленного использования, однако температурный диапазон у них меньше и составляет -40…125°С. Для остальных потребительских приложений лучше всего выбирать датчики с префиксами TLV, способные работать в диапазоне температур -40…125°С при напряжении питания 3,0…26 В.

Основным семейством дискретных датчиков, предлагаемых компанией Infineon, являются датчики TLx496x (таблица 1), которые могут выпускаться как в потребительском, так и в промышленном и автомобильном исполнениях. Отличительной особенностью данного семейства является широкий диапазон рабочих напряжений, составляющий 3…32 В с возможностью перенапряжения до 42 В, при собственном токе потребления, не превышающем 1,6 мА. Широкий диапазон чувствительности и рабочих температур делает эти датчики идеальными для широкого круга приложений, в том числе и для устройств с высоким уровнем функциональной безопасности: промышленного оборудования, лифтов, электроинструмента, автомобилей и многих других.

Таблица 1. Технические характеристики датчиков семейства TLx496x

НаименованиеТипИндукция срабатывания, мТлИндукция отпускания, мТлГистерезис, мТлАвтомо-
бильные прило-
женияПромышлен-
ные прило-
женияКорпус
TLE4961-1M/L Latch 2,0 -2,0 4,0 + + SOT23/SSO-3-2
TLE4961-2M Latch 5,0 -5,0 10,0 + + SOT23
TLE4961-3M/L Latch 7,5 -7,5 15,0 + + SOT23/SSO-3-2
TLE4964-1M Switch 18,0 12,5 5,5 + + SOT23
TLE4964-2M Switch 28,0 22,5 5,5 + + SOT23
TLE4964-3M Switch 12,5 9,5 3,0 + + SOT23
TLE4964-5M Switch 7,5 5,0 2,5 + + SOT23
TLE4968-1M/L Bipolar 1,0 -1,0 2,0 + + SOT23/SSO-3-2
TLE4961-5M Latch 15,0 -15,0 30,0 + + SOT23
TLE4961-4M Latch 10,0 -10,0 20,0 + + SOT23
TLE4964-4M Switch 10,0 8,5 1,5 + + SOT23
TLE4964-6M Switch 3,5 2,5 1,0 + + SOT23
TLV4964-1M Switch 18,0 12,5 5,5 SOT23
TLV4964-2M Switch 28,0 22,5 5,5 SOT23
TLI4961-1M/L Latch 2,0 -2,0 4,0 + SOT23/SSO-3-2
TLV4961-3M Latch 7,5 -7,0 15,0 SOT23
Читайте также  Страны ЕС возмутились из-за «рейсов-призраков» в Европе»/>

Для приложений, требующих высокоточного определения позиции контролируемого объекта, компания Infineon рекомендует дискретные датчики семейства TLE/TLI4963/65-xM (таблица 2), отличающиеся малым уровнем джиттера, не превышающим 0,35 мкс. Микросхемы TLE/TLI4963/65-xM рассчитаны на использование в промышленных и индустриальных приложениях и могут работать в диапазоне питающих напряжений в диапазоне 3,0…5,5 В, потребляя при этом ток, не превышающий 1,4 мА.

Таблица 2. Технические характеристики датчиков семейства TLE/TLI4963/65-xM

НаименованиеТипИндукция срабатывания, мТлИндукция отпускания, мТлГистерезис, мТлАвтомобильные приложенияПромышленные приложенияКорпус
TLE4963-1M Latch 2,0 -2,0 4,0 + SOT23
TLE4963-2M Latch 5,0 -5,0 10,0 + SOT23
TLE4965-5M Unipolarswitch 7,5 5,0 2,5 + SOT23
TLI4963-1M Latch 2,0 -2,0 4,0 + SOT23
TLI4963-2M Latch 5,0 -5,0 10,0 + SOT23
TLI4965-5M Unipolarswitch 7,5 5,0 2,5 + SOT23

В отличие от предыдущих серий дискретных датчиков, выпускаемых в SMD-корпусах, семейство TLV496x-xTA/B (таблица 3) рассчитано на использование в потребительской технике и выпускается в корпусах, предназначенных для монтажа в отверстия. Микросхемы имеют широкий диапазон рабочий напряжений, составляющий 3…26 В, при токе потребления, не превышающем 1,6 мА.

Таблица 3. Технические характеристики датчиков семейства TLV496x-xTA/B

НаименованиеТипИндукция срабатывания, мТлИндукция отпускания, мТлГистерезис, мТлКорпус
TLV4961-1TA Latch 2,0 -2,0 4,0 TO92S-3-1
TLV4961-1TB Latch 2,0 -2,0 4,0 TO92S-3-2
TLV4961-3TA Latch 7,5 -7,5 15,0 TO92S-3-1
TLV4961-3TB Latch 7,5 -7,5 15,0 TO92S-3-2
TLV4964-4TA Unipolarswitch 10,0 8,5 1,5 TO92S-3-1
TLV4964-4TB Unipolarswitch 10,0 8,5 1,5 TO92S-3-2
TLV4964-5TA Unipolarswitch 7,5 5,0 2,5 TO92S-3-1
TLV4964-5TB Unipolarswitch 7,5 5,0 2,5 TO92S-3-2
TLV4968-1TA Latch 1,0 -1,0 2,0 TO92S-3-1
TLV4968-1TB Latch 1,0 -1,0 2,0 TO92S-3-2

Для приложений, требующих определения не только скорости, но и направления вращения роторов электродвигателей, предназначены датчики линейки TLE4966 (таблица 4), содержащие в одном корпусе два датчика Холла, расположенных на расстоянии 1,45 мм. Микросхемы TLE4966 удовлетворяют требованиям AEC-Q100 и могут использоваться, в том числе, в автомобильных приложениях.

Таблица 4. Технические характеристики датчиков семейства TLE4966

НаименованиеТипИндукция срабатывания, мТлИндукция отпускания, мТлГистерезис, мТлКорпус
TLE4966K/L Double Hall, speed and direction output 7,5 -7,5 15 TSOP6/SSO-4-1
TLE4966-2K Double Hall, two independent outputs 7,5 -7,5 15 TSOP6
TLE4966-3K Double Hall, speed and direction output 2,5 -2,5 5 TSOP6
TLE4966V-1K Vertical double Hall, speed and direction output 2,5 -2,5 5 TSOP6

Поломки датчика тока

Частые поломки и признаки неисправности датчика Холла:

  • не стартует мотор, перебои с запуском;
  • нестабильные холостые;
  • при высоких оборотах дергание (частый признак), ТС глохнет.

Неисправный сенсор может замыкать на корпус, провоцируя проблемы с зажиганием.

Недостаток диагностики состоит в том, что перечисленные симптомы могут быть характерными и при поломках других узлов. Обстоятельство отчасти сглаживается методами не слишком сложными, под силу пользователям с элементарными познаниями в технике.

Аналоговые и цифровые решения

Датчики на основе эффекта Холла фиксируют разницу потенциалов. Аналоговое решение, рассмотренное выше, основано на преобразовании индукции поля в напряжение с учетом полярности и силы поля. Принцип работы цифрового датчика состоит в фиксации присутствия или отсутствие поля. В случае достижения индукцией определенного показателя датчик отмечает наличие поля. Если индукция не соответствует необходимому показателю, тогда цифровой датчик показывает отсутствие поля.

Чувствительность датчика определяется его способностью фиксировать поле при той или иной индукции. Цифровой датчик Холла может быть биполярным и униполярным. В первом случае срабатывание и отключение устройства происходит посредством смены полярности. Во втором случае включение происходит при появлении поля, отключается датчик в результате того, что индукция снижается.

Принцип действия

Принцип работы датчика Холла основан на гальваномагнитном явлении, которое показывает результат взаимодействия магнитного поля с полупроводником. Полупроводник подключен к электрической цепи, которая меняет его свойства.

Как только появляется поперечное напряжение, то сразу возникает эффект Холла. В этот момент заряд направлен перпендикулярно вектору поля. Такое явление объясняется воздействием на электроны или дырки силы Лоренца, которая и приводит к их отклонению.

Под воздействием этой силы частицы в полупроводнике двигаются в разные стороны, в соответствии со своим знаком. На одной стороне пластины собираются электроны (отрицательный заряд), а на другой частицы с положительным знаком.

По мере накопления зарядов между ними возникает электрический поток, который препятствует их перемещению под воздействием силы Лоренца. При достижении равенства этой силы и магнитного поля полупроводник вступает в фазу равновесия. Именно так и работает датчик Холла.

Виды устройств

Основной задачей этого прибора считается определение напряженности магнитного потока. Практически это сенсор определения значений магнитного поля. Существуют датчики двух видов:

  • цифровые;
  • аналоговые.

Цифровые приборы бывают биполярными и униполярными. Биполярные элементы работают в зависимости от полярности магнитного поля, то есть одна включает датчик, а вторая отключает.

Униполярные приборы включаются при появлении любой полярности и отключаются по мере ее уменьшения. Цифровые сенсоры измеряют индукцию и появление соответствующего напряжения, то есть наличие или отсутствие магнитного поля.

Прибор показывает единицу, когда индукция поля достигает пороговое значение. До этого момента сенсор будет показывать ноль. Такой датчик не сможет определить наличие магнитного поля со слабой индукцией. Кроме того, на точность показаний будет влиять дистанция до измеряемого объекта.

Замена датчика Холла

Заменить датчик Холла не составит особых затруднений. С этой работой под силу справится своими руками даже начинающему автолюбителю.

Чуть ниже на видео достаточно подробно показан процесс замены датчика в трамблере автомобиля УАЗ.

Обычно замена датчика Холла состоит из нескольких этапов:

  • Прежде всего, трамблер снимается с машины.
  • Далее снимается крышка трамблера и совмещается метка механизма газораспределения с меткой коленвала.
  • Запомнив положение трамблера, нужно открутить крепежные элементы гаечным ключом.
  • При наличии фиксаторов и стопоров, их также следует извлечь.
  • Вал вытаскивают из трамблера.
  • Осталось отсоединить клеммы датчика Холла и открутить его.
  • Оттянув регулятор, неисправная деталь осторожно вынимается через образованную щель.
  • Новый датчик Холла устанавливается в обратной последовательности.

Проверка работоспособности датчика Холла позволяет не только точно определить причину отказа двигателя. Благодаря простым приемам автомобилист сэкономит свое время на ремонт, а также исключит ненужную трату денег.

Какие бывают типы датчиков Холла

Датчики Холла подразделяются на два типа:

  1. Аналоговые датчики Холла
    В этом типе датчиков использовано преобразование магнитной индукции напрямую в напряжение. Свое применение аналоговые датчики нашли в измерительных технических устройствах. Это, например, датчики тока, датчики вибрации, датчики угла поворота.
  2. Цифровые датчики Холла
    Цифровой датчик Холла имеет всего два положения, которые показывают наличие или отсутствие магнитного поля. Практически это аналог геркона, но если в герконе присутствует механический контакт, то цифровой датчик Холла бесконтактный.

датчик с эффектом Холла

Подразделяются такие датчики на три вида:

  • Униполярный – когда сила магнитного поля достигает определенной величины датчик срабатывает. Такие датчики откликаются только на один полюс. Если к датчику поднести магнит другим полюсом, то датчик на него не реагирует. Когда сила магнитного поля снижается датчик возвращается в исходное положение.
  • Биполярный – в этом случае имеет значение полярность магнитного поля. Один полюс включает датчик, другой полюс выключает.
  • Омниполярный датчик Холла – реагирует на любой магнитный полюс. Т.е. любой полюс может включать и выключать датчик. Это может быть, как южный, так и северный полюс.
Читайте также  ФАС предупредила о риске дестабилизации из-за цен на стройматериалы»/>

Как правило цифровой датчик Холла имеет три вывода и внешне похож на транзистор.

сенсор Холла с выводами

На два вывода датчика подается питание, которое может быть, как однополярным, так и двуполярным. Третий вывод сигнальный. Такой тип датчиков часто применяется в бесконтактных системах зажигания, как датчик скорости в автомобилях и т.д.

Принцип работы датчика Холла, признаки неисправности

Автомобиль имеет множество разнообразных датчиков, которые сигнализируют об определённых процессах, протекающих как внутри, так и снаружи машины. Без них была бы невозможна нормальная работа транспортного средства.

Даже за показания спидометра отвечает датчик, измеряющий количество оборотов, делаемых колёсами. Ещё один хороший пример — лямбда-зонд. Это тоже датчик, но его задача измерять количество кислорода в выхлопных газах. На основе его показаний строится работа двигателя. Точнее, регулируется соотношение впрыска воздуха и топлива.

Датчик Холла выполняет не менее важную роль в функционировании автомобиля. В каком-то смысле она даже более ответственная. Это важный элемент системы зажигания, без которого была бы невозможна нормальная работа мотора.

История создания датчика Холла

Создание датчика Холла приписывается видному учёному-физику Эдвину Холлу, в честь которого и было названо устройство. Произошло это в 1879 году. Он сделал важное открытие, которое и дало возможность создать этот датчик.

Фундаментальность сделанного учёным открытия подтверждает то, что датчик Холла применяется не только в автомобилях, но и во многих приборах из других сфер. Открытое Эдвином Холлом гальваномагнитное явление стало ещё одним толчком для развития автомобилестроения.

Вся суть открытого учёным явления сводится к разнице потенциалов, которая возникает, когда проводник помещается в магнитное поле. При этом на проводник должен поступать постоянный ток.

Особенности датчика

Принцип работы

Датчик Холла в своей основе имеет эффект, описанный выше, но его применение отличается некоторыми нюансами. Внутри прибора происходит следующее: на полупроводник под электрическим напряжением оказывает воздействие магнитное поле, причём оно пересекает его поперёк. Результатом этого явления становится электродвижущая сила.

Внимание! При возникновении электродвижущей силы напряжение меняется в диапазоне от 0,4 до 3 В.

Чтобы лучше понять принцип работы датчика Холла рассмотрим конкретный пример. Во-первых, для создания вышеописанного эффекта нужна тонкая пластина, которая будет играть роль полупроводника. Во-вторых, необходим источник электрического тока. Без провода и постоянного магнита также обойтись не получится.

Ток необходимо пустить между двумя сторонам пластины. Причём стороны должны быть параллельны друг другу. Провода нужно закрепить с двух других сторон. Магнит должен располагаться неподалёку от полупроводника. Если всё это будет выполнено в точности, то возникнет эффект Холла. По факту описанная конструкция представляет собой генератор.

При необходимости можно сделать так, чтобы это устройство работало в импульсном режиме. Но для этого нужно между пластиной и магнитом установить экран. Конструкция экрана должна иметь щели.

Для чего нужен щелевой датчик Холла в автомобилях

Главной задачей датчика Холла является изменение напряжения на выходе при перемене состояния магнитного поля. Малейшая неисправность может привести инжектор в нерабочее состояние.

Эффект Холла помогает добиться коммутации между сигнальными контактами, отвечающими за скорость, позиционирование и передачу сигналов. Простейшим считается именно аналоговый датчик. Также существует цифровой аналог, который имеет более сложную конструкцию.

Аналоговый датчик Холла играет роль преобразователя, который должен коммутировать питание для системы зажигания. Тем не менее можно найти конструкции, которые используют целые группы датчиков. Но они находятся на определённом отдалении от магнитов.

В большинстве случаев датчик Холла идёт в комплекте с сердечником. Также к устройству примыкает постоянный магнит. Именно он оказывает необходимое влияние на полупроводниковый кристалл.

В тех автомобилях, в которых установлен цифровой датчик Холла возможно функционирование в двух режимах защиты. Первый активирует защитную схему, а второй отключает. Но такое устройство в большинстве случаев называется распределителем или переключателем. Хотя в основе лежит всё тот же эффект. Подобные аппараты устанавливают на свои машины такие компании, как:

  • Opel,
  • AUDI,
  • BYD Flyer,
  • Volkswagen Golf,
  • Suzuki,
  • Passat,
  • BMW.

Довольно часто датчик Холла можно увидеть во многих бытовых устройствах. К примеру, тяжело себе представить компьютерный привод без него. Также нельзя не вспомнить о системах наблюдения и целом ряде мотоциклов.

Внимание! Для повышения точности работы датчик Холла устанавливают в клавиатуры и джойстики.

Датчик Холла обладает целым рядом преимуществ, которые делают его незаменимым в современном оборудовании:

  • Устройство позволяет увеличить производительность мотора.
  • Без него невозможна точная работа тахометра и спидометра,
  • Датчик повышает безопасность автомобиля.

Датчик Холла можно использовать по-разному. Но в большинстве случаев автомобильные конструкторы применяют его для контроля скорости. Точнее, он осуществляет мониторинг передаточных колёс и валов. Также он контролирует их скорость вращения. Это позволяет обеспечить быстрый запуск двигателя, работающего на основе принципа внутреннего сгорания.

Также датчик Холла может обеспечить запуск антиблокировочной тормозной системы, а это, в свою очередь, напрямую влияет на безопасность на дороге. О тахометре в таком случае и говорить не приходится.

Но возможно и другое применение. Отличным примером в данном контексте будут бесщёточные электрические двигатели, работающие благодаря действию постоянного тока. Благодаря датчику Холла в таких устройствах определяется место, где находится постоянный магнит.

Как видите, у датчика Холла может быть множество применений. Сфера использования напрямую зависит от решения производителя. Допустим, конструкцию с двумя расположенными друг напротив друга магнитами можно использовать для того, чтобы регулировать скорость работы дискового накопителя.

Конструкция

Чтобы лучше понять, что собой представляет датчик Холла необходимо в деталях изучить его конструкцию. К счастью, схема довольно простая, и чтобы её понять нет необходимости в специальных знаниях. Но вы должны учитывать, что непосредственными производителями могут вноситься определённые изменения для достижения нужного эффекта.

Внимание! Довольно сильно на конструкцию датчика влияет место установки аппарата.

В основе базовой конструкции лежит полупроводниковое соединение. Чаще всего для создания кристалла используют антимонид индия. Для большей надёжности он крепится на алюминиевой подложке. Эта схема находится в той части, которая отвечает за сенсорику.

В конструкции плоские стороны кристалла находятся прямо перпендикулярно той части датчика, которая выполняет основную работу. Проводники проходят через ручку и подключаются к электронной схеме. Она, в свою очередь, реализует замыкание выходных контактов.

Особое значение в конструкции имеет расположение полупроводника по отношению к магниту. Оно должно быть таким, чтобы угол прохождения силовых линий был прямым и проходил через кристалл датчика. Только так может появиться магнитная индукция достаточной величины.

Когда ток попадает в кристалл — создаётся ЭДС. Конечно, это становится возможным только в том случае, если основной элемент находится в магнитном поле. Электродвижущая сила образуется на сторонах полупроводников, которые запаралелены.

Внимание! После своего образование ЭДС направляется в рабочую схему.

При прохождении проводником магнитного поля образуется нужный нам эффект. Чтобы понять, что происходит внутри, рассмотрим это на микроуровне. Дрейфующие электроны переносят заряд, после чего активируют поле. Это позволяет применить силу Лоренца.

Результатом применения силы Лоренца является то, что заряды разделяются. При этом у них может быть как позитивный, так и негативный заряд. Он образуется вверху или внизу полупроводника. Чтобы это стало возможным, корпус устройства делается из неметаллического материала. Подобный подход позволяет избежать искажения магнитных волн.

Терминология

Прерыватель-распределитель зажигания

— электромеханическое устройство, обеспечивающее своевременную подачу импульсов высокого напряжения на свечи зажигания. Часто его называют
трамблером
.

Опережение зажигания

— воспламенение рабочей смеси в цилиндре раньше, чем закончится такт сжатия.

Угол опережения зажигания (УОЗ)

— угол поворота коленчатого вала двигателя от положения, соответствующего появлению искры на свече до прихода поршня в верхнюю мертвую точку.

Читайте также  Никита Михалков сегодня, 15 января 2023 года: чем болен Михалков, как состояние здоровья Михалкова после реанимации, есть изменения? Последние новости

Контактная система зажигания

— система, в которой коммутация катушки зажигания обеспечивается механическим прерывателем.

Бесконтактная система зажигания

— система, в которой коммутация катушки зажигания обеспечивается электронным модулем, управляемым электронным датчиком положения коленчатого вала — например, датчиком Холла (ВАЗ-2108) или магнитоэлектрическим (ГАЗ-2410).

Прерыватель

системы зажигания — механический выключатель в трамблере, непосредственно соединенный с первичной цепью катушки зажигания.

Бегунок

— элемент трамблера, поочередно передающий высокое напряжение от катушки зажигания на высоковольтные провода, соединенные со свечами зажигания двигателя.

Угол замкнутого состояния контактов (УЗСК)

— величина, показывающая, как долго контакты механического прерывателя должны оставаться замкнутыми. Для классических Жигулей УЗСК составляет примерно 55 градусов. Правильно выбранный УЗСК дает катушке зажигания возможность набирать нужную энергию и полностью отдавать ее на свечи зажигания.

Пример использования аналогового элемента

Рассмотрим в качестве примера конструкцию датчика тока ы основе работы которого используется эффект Холла.

Упрощенная схема датчика тока на основе эффекта Холла

Обозначения:

  • А – проводник.
  • В – незамкнутое магнитопроводное кольцо.
  • С – аналоговый датчик Холла.
  • D – усилитель сигнала.

Принцип работы такого устройства довольно прост: ток, проходящий по проводнику, создает электромагнитное поле, датчик измеряет его величину и полярность и выдает пропорциональное напряжение UДТ, которое поступает на усилитель и далее на индикатор.

Как проверить датчик Холла в автомобиле

) бесконтактная система зажигания для бензинового двигателя управляется этим датчиком. Соответственно, при его выходе из строя возникают серьезные проблемы с работой двигателя.

Чтобы не ошибиться при диагностике, необходимо понимать принцип работы датчика, знать его конструкцию и методы тестирования.

Существует несколько способов, позволяющих проверить исправность датчика Холла. Каждый автомобилист может выбрать для себя наиболее подходящий вариант:

  1. Взять для проверки рабочий датчик у соседа или на автомобильной разборке и установить его вместо «родного». Если проблемы двигателя исчезнут, значит, придется покупать новую деталь.
  2. При помощи тестера можно измерить напряжение на выходе датчика. В исправном устройстве напряжение будет изменяться от 0,4 В до 11 В.
  3. Можно создать имитацию датчика Холла. Для этого с трамблера снимают трехштекерную колодку. Затем включают зажигание и отрезком провода соединяют выходы 3 и 6 коммутатора. Появление искры свидетельствует о выходе датчика из строя.

Если в результате проверки обнаружится, что датчик Холла неисправен, тогда его необходимо заменить на новый.

  1. Имитируем наличие ДХ. Это наиболее простой способ, позволяющий быстро провести проверку. Но его эффективности может идти речь только в том случае, если не формируется искра при наличии питания на основных узлах системы. Для тестирования следует выполнить следующие действия:
  • отключаем от трамблера трехпроводной штекер;
  • запускаем систему зажигания и одновременно с этим «коротим» проводом массу и сигнал с датчика (контакты 3 и 2, соответственно). При наличии искры на катушке зажигания, можно констатировать, что датчик СБЗ потерял работоспособность и ему необходима замена.

Обратим внимание, что для выявления искрообразования высоковольтный проводок должен находиться рядом с массой.

  1. Применение мультиметра для проверки. Это способ наиболее известный, и приводится в руководстве к автомобилю. Нужно подключить щупы прибора, как продемонстрировано на рисунке 7, и произвести замеры напряжения.

Схема подключения мультиметра для проверки ДХ

На исправном датчике напряжение будет колебаться в диапазоне от 0,4 до 11 вольт (не забудьте перевести мультиметр в режим измерения постоянного тока). Следует заметить, что проверка осциллографом будет намного эффективней. Подключается он таким же образом, как и мультиметр. Пример осциллограммы рабочего ДХ приведен ниже.

Осциллограмма исправного датчика Холла СБЗ

  1. Установка заведомо рабочего ДХ. Если в наличии имеется еще один однотипный датчик, или имеется возможность взять его на время, то данный вариант тоже имеет место на существование, особенно если первые два сделать затруднительно.

Ест еще один вариант проверки, по принципу напоминающий второй способ. Он может быть полезен, если под рукой нет измерительных приборов. Для тестирования понадобиться резистор номиналом 1,0 кОм, светодиод, например, из фонарика зажигалки и несколько проводков. Из всего этого набора собираем прибор в соответствии с рисунком 9.

Рис. 9. Светоиндикаторный тестер для проверки ДХ

Тестирование осуществляем по следующему алгоритму:

  1. Проверяем питание на датчике. Для этой цели подключаем (соблюдая полярность) наш тестер к клеммам 1 и 3 ДХ. Включаем зажигание, если с питанием все нормально, светодиод загорится, в противном случае потребуется проверять цепь питания (предварительно убедившись в правильном подключении светодиода).
  2. Проверяем сам датчик. Для этого провод с первой клеммы «перебрасываем» на вторую (сигнал с ДХ). После этого начинаем крутить распредвал (руками или стартером). Моргание светодиода засвидетельствует исправность ДХ. В противном случае, на всякий случай проверяем соблюдение полярности при подключении светодиода, и если оно выполнено правильно, — меняем датчик на новый.

Любой современный автомобиль «напичкан» самыми различными датчиками. Сигналы от них поступают на электронный блок управления (ЭБУ), бортовой компьютер или непосредственно на приборную панель. В данной статье речь пойдет о датчике Холла, его использовании в автомобиле и способах самостоятельной проверки работоспособности этого сенсора.

Далее все просто:

  • Включаем блок питания (или просто подсоединяем провода к снятому с автомобиля аккумулятору): при этом показания вольтметра должны быть близкими к нулю (как правило, не более 0,3÷0,4 В).
  • Вставляем в щель датчика плоский металлический предмет (подойдет пилка по металлу или нож). Если показания прибора резко увеличиваются (величина напряжения зависит от марки тестируемого сенсора), то датчик Холла исправен. В противном же случае можно сделать заключение, что перебои в работе двигателя происходили именно из-за него, и, следовательно, он подлежит замене на новый.

Если у вас нет мультиметра, то вместо него можно использовать светодиод (рассчитанный на прямое напряжение около 12 В и стоимостью порядка 10÷12 рублей), чтобы проверить датчик по аналогичному алгоритму.

На заметку! В качестве источника питания можно использовать регулируемый лабораторный блок или, в крайнем случае, батарейку типа «Крона» напряжением 9 В.

Применение датчика

Широко применяются преобразователи Холла в современной бытовой технике. С их помощью происходит взвешивание белья в стиральных машинах. При запуске агрегата вещи сначала намокают, а потом начинает вращаться барабан. По его скорости вращения определяется общий вес и происходит программирование машины на расход порошка, воды и ополаскивателя.

В серийном производстве впервые датчики стали использоваться в компьютерных клавиатурах. Здесь происходит взаимодействие чувствительного элемента на плате и магнита на клавишах. Упругость осуществляется за счет полимерного материала, который обладает большим сроком службы.

Единственным элементом, который может сломаться в клавиатуре является контроллер. Электрики очень часто пользуются датчиком Холла, когда замеряют бесконтактными клещами силу тока в проводах. Измерительный прибор реагирует на изменение электромагнитного поля вокруг кабелей и проводов.

Благодаря индуктивности из медной проволоки, находящейся в клещах, создается возбуждение и образуется электромагнитная волна. Часть ее значения оценивается сенсором, который передает данные в контроллер. По заложенным в нем формулам производится расчет, и результат выводится на дисплей.

Применяются датчики в сотовых телефонах для слежения за зарядом аккумулятора и его расходом. Но очень важным такой момент считается в эксплуатации электромобилей, так как наличие энергии в них занимает особое место. Используются преобразователи Холла в электронных компасах и в качестве стабилизатора изображений в мобильных камерах.

Но особенно широко эти приборы применяются в автомобильной промышленности. В автомобилях с их помощью происходит определение частоты вращения коленвала двигателя, положение дроссельной заслонки, скорости движения автомобиля и так далее. Применяется датчик в электронной системе зажигания. Находится он в трамблере и заменяет контакты для образования искры.

Источники

  • https://220v.guru/elementy-elektriki/datchiki/princip-raboty-i-primenenie-datchika-holla.html
  • https://carwin-motors.ru/dvigatel/chto-takoe-datchik-holla.html
  • https://www.compel.ru/lib/136555
  • https://osensorax.ru/posiciya/datchik-holla
  • https://ElectroInfo.net/radiodetali/chto-takoe-datchik-holla.html
  • https://4x4privod.ru/ustrojstvo-datchika-holla-princip-raboty-primenenie-principialnaya-shema-podkljuchenie/
  • https://legoteacher.ru/vidy-datchikov/datchik-holla/
  • https://perekrestok-info.com/datchiki-holla-printsip-raboty-primenenie/
  • https://sto-tolyatti.ru/tehobsluzhivanie/datchiki-holla.html
  • https://www.asutpp.ru/chto-takoe-datchik-holla.html
  • https://honda36.ru/sovety/datchik-holla-principialnaya-shema.html

programm-tv